题目内容

设数列a1,a2,…,an,…满足a1=a2=1,a3=2,且对任何自然数n,都有anan+1an+2≠1,又anan+1an+2an+3=an+an+1+an+2+an+3,则a1+a2+…+a100的值是
200
200
分析:由anan+1an+2an+3=an+an+1+an+2+an+3 可得an+1an+2an+3an+4=an+1+an+2+an+3+an+4相减可得an+4=an,再由已知可推得数列为,1,1,2,4循环出现,故可求解a1+a2+…+a100的值
解答:解:∵对任何自然数n,都有anan+1an+2an+3=an+an+1+an+2+an+3  ①∴an+1an+2an+3an+4=an+1+an+2+an+3+an+4,②
②-①,得anan+1an+2(an+4-an)=an+4-an,即(an+4-an)(anan+1an+2-1)=0
由已知anan+1an+2≠1,即anan+1an+2-1≠0,只能an+4-an=0,即得an+4=an
又anan+1an+2an+3=an+an+1+an+2+an+3,a1=a2=1,a3=2,得a4=4.
故数列为,1,1,2,4的循环出现
∴a1+a2+…+a100=25(1+1+2+4)=200.
故答案为:200
点评:本题为数列的求和问题,由题意推出故数列为,1,1,2,4的循环是解决问题的关键,属中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网