题目内容
【题目】某校一个校园景观的主题为“托起明天的太阳”,其主体是一个半径为5米的球体,需设计一个透明的支撑物将其托起,该支撑物为等边圆柱形的侧面,厚度忽略不计.轴截面如图所示,设.(注:底面直径和高相等的圆柱叫做等边圆柱.)
(1)用表示圆柱的高;
(2)实践表明,当球心和圆柱底面圆周上的点的距离达到最大时,景观的观赏效
果最佳,求此时的值.
【答案】(1)(2)当时,观赏效果最佳.
【解析】试题分析:
(1)做出辅助线,结合图形的特点可得;
(2)结合余弦定理可得结合三角函数的性质有当时,观赏效果最佳.
试题解析:
(1)作于点,则在直角三角形中,
因为,
所以,
因为四边形是等边圆柱的轴截面,
所以四边形为正方形,
所以.
(2)由余弦定理得:
,……8分
因为,所以,
所以当,即时,取得最大值 ,
所以当时,的最大值为.
答:当时,观赏效果最佳.
练习册系列答案
相关题目
【题目】学生会为了调查学生对2018年俄罗斯世界杯的关注是否与性别有关,抽样调查100人,得到如下数据:
不关注 | 关注 | 总计 | |
男生 | 30 | 15 | 45 |
女生 | 45 | 10 | 55 |
总计 | 75 | 25 | 100 |
根据表中数据,通过计算统计量K2= ,并参考一下临界数据:
P(K2>k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.84 | 5.024 | 6.635 | 7.879 | 10.83 |
若由此认为“学生对2018年俄罗斯年世界杯的关注与性别有关”,则此结论出错的概率不超过( )
A.0.10
B.0.05
C.0.025
D.0.01