ÌâÄ¿ÄÚÈÝ
{an}ÊÇÓÉʵÊý¹¹³ÉµÄÎÞÇîµÈ±ÈÊýÁУ¬sn=a1+a2+¡+an£¬¹ØÓÚÊýÁÐ{sn}£¬¸ø³öÏÂÁÐÃüÌ⣺¢ÙÊýÁÐ{sn}ÖÐÈÎÒâÒ»Ïî¾ù²»Îª0£»¢ÚÊýÁÐ{sn}ÖбØÓÐÒ»ÏîΪ0£»¢ÛÊýÁÐÖлòÕßÈÎÒâÒ»ÏΪ0£»»òÕßÓÐÎÞÇî¶àÏîΪ0£»¢ÜÊýÁÐ{sn}ÖÐÒ»¶¨²»¿ÉÄܳöÏÖsn=sn+2£»¢ÝÊýÁÐ{sn}ÖÐÒ»¶¨²»¿ÉÄܳöÏÖsn=sn+3£»ÆäÖÐÕýÈ·µÄÃüÌâÊÇ£¨¡¡¡¡£©
A£®¢Ù¢Û | B£®¢Ú¢Ü | C£®¢Û¢Ý | D£®¢Ú¢Ý |
¢Ù²»ÕýÈ·£¬Èçµ± an=£¨-1£©n+1ʱ£¬s4=1-1+1-1=0£¬ÇÒµ±nΪżÊýʱ£¬sn=0£®
¢Ú²»ÕýÈ·£¬Èçµ± an=2n ʱ£¬sn=2n+1-2£¬ÓÉÓÚn¡Ý1£¬¹Êsn Ò»¶¨²»µÈÓÚ0£®
Óɢٺ͢ڿɵã¬ÊýÁÐ{sn}ÖлòÕßÈÎÒâÒ»ÏΪ0£»»òÕßÓÐÎÞÇî¶àÏîΪ0£¬¹Ê¢ÛÕýÈ·£®
ÓÉ¢ÙÖª£¬¢Ü²»ÕýÈ·£¬¢ÝÕýÈ·£®
½áºÏËù¸øµÄ´ð°¸£¬ÓÃÅųý·¨Öª£¬Ó¦Ñ¡C£¬
¹ÊÑ¡C£®
¢Ú²»ÕýÈ·£¬Èçµ± an=2n ʱ£¬sn=2n+1-2£¬ÓÉÓÚn¡Ý1£¬¹Êsn Ò»¶¨²»µÈÓÚ0£®
Óɢٺ͢ڿɵã¬ÊýÁÐ{sn}ÖлòÕßÈÎÒâÒ»ÏΪ0£»»òÕßÓÐÎÞÇî¶àÏîΪ0£¬¹Ê¢ÛÕýÈ·£®
ÓÉ¢ÙÖª£¬¢Ü²»ÕýÈ·£¬¢ÝÕýÈ·£®
½áºÏËù¸øµÄ´ð°¸£¬ÓÃÅųý·¨Öª£¬Ó¦Ñ¡C£¬
¹ÊÑ¡C£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿