题目内容
【题目】如图,点E为正方形ABCD边CD上异于点C,D的动点,将△ADE沿AE翻折成△SAE,使得平面SAE⊥平面ABCE,则下列说法中正确的有( )
①存在点E使得直线SA⊥平面SBC;
②平面SBC内存在直线与SA平行
③平面ABCE内存在直线与平面SAE平行;
④存在点E使得SE⊥BA.
A.1个 B.2个 C.3个 D.4个
【答案】A
【解析】
试题分析::①若直线SA⊥平面SBC,
则直线SA与平面SBC均垂直,则SA⊥BC,
又由AD∥BC,则SA⊥AD,这与∠SAD为锐角矛盾,故①错误;
②∵平面SBC∩直线SA=S,
故平面SBC内的直线与SA相交或异面,故②错误;
③取AB的中点F,则CF∥AE,由线面平行的判定定理,可得CF∥SAE平行,故③正确;
④若SE⊥BA,由EC∥AB,可得SE⊥EC,这与∠SEC为钝角矛盾,故④错误
练习册系列答案
相关题目