题目内容

已知函数f(x)=sin(ωx+
π
4
)(x∈R,ω>0)
的最小正周期为π,为了得到函数g(x)=cosωx的图象,只要将y=f(x)的图象(  )
A、向左平移
π
8
个单位长度
B、向右平移
π
8
个单位长度
C、向左平移
π
4
个单位长度
D、向右平移
π
4
个单位长度
分析:由周期函数的周期计算公式:T=
ω
,算得ω=2.接下来将f(x)的表达式转化成与g(x)同名的三角函数,再观察左右平移的长度即可.
解答:解:由题知ω=2,
所以f(x)=sin(2x+
π
4
)=cos[
π
2
-(2x+
π
4
)]=cos(2x-
π
4
)=cos2(x-
π
8
)

故选择A.
点评:本题考点定位:本小题考查诱导公式,函数图象的变换,基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网