题目内容

点P在曲线y=x3-x+
23
上移动,设点P处切线的倾斜角为α,求α的范围.
分析:根据导数的几何意义可知切线的斜率即为该点处的导数,再根据导数的取值范围求出斜率的范围,最后再根据斜率与倾斜角之间的关系k=tanα,求出α的范围即可.
解答:解:∵tanα=3x2-1,
∴tanα∈[-1,+∞).
当tanα∈[0,+∞)时,α∈[0,
π
2
);
当tanα∈[-1,0)时,α∈[
4
,π).
∴α∈[0,
π
2
)∪[
4
,π).
点评:考查学生会利用导数求曲线上过某点切线方程的斜率,会利用切线的斜率与倾斜角之间的关系k=tanα进行求解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网