题目内容

已知等比数列{an}的前三项依次为t,t-2,t-3.则an=(  )
A、4-(
1
2
)n
B、4-2n
C、4•(
1
2
)n-1
D、4-2n-1
分析:根据等比中项的性质可知:(t-2)2=t(t-3),求出方程的解得到t的值,由t的值求得数列{an}的首项和公比,即可写出数列{an}的通项公式.
解答:解:∵t,t-2,t-3成等比数列,
∴(t-2)2=t(t-3),解得t=4
∴数列{an}的首项为4,公比为
1
2

则数列的通项an=4•(
1
2
)n-1

故选C.
点评:本题主要考查学生掌握等比数列的性质,特别是等比中项的性质,灵活运用等比数列的通项公式化简求值,是一道基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网