题目内容

已知椭圆的中心在坐标原点,焦点在轴上,椭圆上的点到焦点距离的最大值为,最小值为
(Ⅰ)求椭圆方程;
(Ⅱ)若直线与椭圆交于不同的两点,且线段的垂直平分线过定点,求的取值范围.

(Ⅰ)(Ⅱ)

解析试题分析:(Ⅰ)本小题通过告诉两个条件.到焦点最长和最短的焦半径,即可求得所求的椭圆方程.本小题的已知条件要记清不要混淆.(Ⅱ)本小题是直线与椭圆的关系,常用的方法就是联立方程,判别式大于零,韦达定理.再根据弦MN的中垂线恒过一点.根据中点,定点,斜率其中的两个条件所以可以写出垂直平分线的直线方程.再将另一个代入就可得到一个关于k,m的等式.再结合判别式得到不等式即可得到k的取值范围.本题的运算量较大些.要认真做到“步步为赢”.
试题解析:(I)由题意设椭圆的标准方程为

       4分
(Ⅱ)设

消去并整理得 6分
∵直线与椭圆有两个交点
,即 8分

中点的坐标为 10分
的垂直平分线方程:



 12分
将上式代入得


的取值范围为 14分
考点:1.待定系数求椭圆方程.2.直线与椭圆的方程.3.韦达定理4.不等式的解法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网