题目内容

【题目】已知抛物线上点处的切线方程为

求抛物线的方程;

为抛物线上的两个动点,其中,线段的垂直平分线轴交于点,求面积的最大值.

【答案】.

【解析】试题分析:(1)先根据导数几何意义得,再根据切点在切线上,解方程组得(2)设线段中点,根据斜率公式得根据点斜式得线段的垂直平分线方程,解得T坐标,利用点到点到直线距离公式得高,联立直线方程与抛物线方程,利用韦达定理以及弦长公式得底|AB|,根据三角形面积公式得面积函数关系,最后根据均值不等式求最值

试题解析:(Ⅰ)设点,由,求导

因为直线的斜率为-1,所以,解得

所以抛物线的方程为

(Ⅱ)设线段中点,则

∴直线l的方程为

过定点.

联立

AB的距离

当且仅当,即 (-2,2)时取等号,

的最大值为.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网