题目内容
1.如图,在圆锥SO中,其母线长为2,底面半径为$\frac{1}{2}$,一只虫子从底面圆周上一点A出发沿圆锥表面爬行一周后又回到A点,则这只虫子所爬过的最短路程是2$\sqrt{2}$.分析 利用圆锥侧面展开图的弧长等于底面圆的周长,进而得出扇形圆心角的度数,再利用勾股定理求出AA′的长.
解答 解:由题意可得出:SA=SA′=2,
∠ASA′=$\frac{2π×\frac{1}{2}}{2}$=$\frac{π}{2}$,
∴AA′=2$\sqrt{2}$,
故答案为:2$\sqrt{2}$.
点评 此题主要考查了平面展开图的最短路径问题,得出∠ASA′的度数是解题关键.
练习册系列答案
相关题目
6.某化工厂生产一种化工产品,据负责该产品生产的部门预算,当该产品年产量在50吨至300吨之间时,其生产的总成本y(万元)与年产量x(吨)之间的部分对应数据大致如下表:
(1)给出如下四个函数:
①y=ax2+b,②y=$\frac{1}{10}{x}^{2}+ax+b$,③y=a•bx,④y=a•logbx.根据上表数据,从上述四个函数中选取一个最恰当的函数描述y与x的变化关系,并通过表中前两组数据,求出y与x的函数解析式;
(2)根据你求出的函数解析式,试问当年产量为多少吨时,生产每吨的平均成本最低?每吨的最低成本是多少?
(3)若将每吨产品的出厂价定为16万元,则年产量为多少吨时,方可使得全年的利润最大?并求出全年的最大利润.
生产量x(单位:吨) | 50 | 100 | 130 | 180 | 200 | 250 | 300 |
生产总成本y(单位:万元) | 2750 | 2000 | 1750 | 1800 | 2050 | 2750 | 4050 |
①y=ax2+b,②y=$\frac{1}{10}{x}^{2}+ax+b$,③y=a•bx,④y=a•logbx.根据上表数据,从上述四个函数中选取一个最恰当的函数描述y与x的变化关系,并通过表中前两组数据,求出y与x的函数解析式;
(2)根据你求出的函数解析式,试问当年产量为多少吨时,生产每吨的平均成本最低?每吨的最低成本是多少?
(3)若将每吨产品的出厂价定为16万元,则年产量为多少吨时,方可使得全年的利润最大?并求出全年的最大利润.