搜索
题目内容
已知对一组观测值(x
i
,y
i
)(i=1,2,…,n)作出散点图后,确定具有线性相关关系,若对于
=
+
x,求得
=0.51,
=61.75,
=38.14,则线性回归方程为________.
试题答案
相关练习册答案
=0.51x+6.65
∵
=
-
=38.14-0.51×61.75=6.647 5≈6.65.
∴
=0.51x+6.65.
练习册系列答案
中考模拟预测卷系列答案
小学拓展课堂突破系列答案
字词句段篇章语言训练系列答案
口算应用题整合集训系列答案
小学升初中教材学法指导系列答案
小学生奥数训练营系列答案
中考红8套系列答案
全真模拟卷小学毕业升学总复习系列答案
全品高考短平快系列答案
初中学业会考仿真卷系列答案
相关题目
某工厂生产
、
两种元件,其质量按测试指标划分为:大于或等于
为正品,小于
为次品.现从一批产品中随机抽取这两种元件各
件进行检测,检测结果记录如下:
B
由于表格被污损,数据
、
看不清,统计员只记得
,且
、
两种元件的检测数据的平均值相等,方差也相等.
(1)求表格中
与
的值;
(2)从被检测的
件
种元件中任取
件,求
件都为正品的概率.
下面是调查某地区男女中学生是否喜欢理科的等高条形图,阴影部分表示喜欢理科的百分比,从下图可以看出( )
A.性别与是否喜欢理科无关
B.女生中喜欢理科的比为80%
C.男生比女生喜欢理科的可能性大些
D.男生中喜欢理科的比为
某校高三有四个班,某次数学测试后,学校随机地在各班抽取部分学生进行测试成绩统计,各班被抽取的学生人数恰好成等差数列,人数最少的班被抽取了22人. 抽取出来的所有学生的测试成绩统计结果的频率分布条形图如图所示,其中120~130(包括120分但不包括130分)的频率为0.05,此分数段的人数为5人.
(1)问各班被抽取的学生人数各为多少人?
(2)求平均成绩;
(3)在抽取的所有学生中,任取一名学生,求分数不低于90分的概率.
某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在[29.94,30.06)的零件为优质品.从两个分厂生产的零件中各抽出了500件,量其内径尺寸,得结果如下表:
甲厂:
分组
[29.86,29.90)
[29.90,29.94)
[29.94,29.98)
[29.9830.02),
[30.02,30.06)
[30.06,30.10)
[30.10,30.14)
频数
12
63
86
182
92
61
4
乙厂:
分组
[29.86,29.90)
[29.90,29.94)
[29.94,29.98)
[29.9830.02),
[30.02,30.06)
[30.06,30.10)
[30.10,30.14)
频数
29
71
85
159
76
62
18
(1)试分别估计两个分厂生产的零件的优质品率;
(2)由以上统计数据填下面2×2列联表,并问是否有99%的把握认为“两个分厂生产的零件的质量有差异”?
甲厂
乙厂
合计
优质品
非优质品
合 计
附:
P(χ
2
≥x
0
)
0.05
0.01
x
0
3.841
6.635
变量x与y具有线性相关关系,当x取值为16,14,12,8时,通过观测得到y的值分别为11,9,8,5.若在实际问题中,y的预报值最大是10,则x的最大取值不能超过________.
以下四个命题中:
①从匀速传递的产品生产流水线上,质检员每
分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;
②若两个变量的线性相关性越强,则相关系数的绝对值越接近于
;
③在某项测量中,测量结果
服从正态分布
,若
位于区域
内的概率为
,则
位于区域
内的概率为
;
④对分类变量
与
的随机变量
K
2
的观测值
k
来说,
k
越小,判断“
与
有关系”的把握越大.其中真命题的序号为( )
A.①④
B.②④
C.①③
D.②③
某学校从高二甲、乙两个班中各选6名同掌参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生成绩的众数是85,乙班学生成绩的平均分为81,则x+y的值为( )
A.6
B.7
C.8
D.9
某班班主任对全班50名学生学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示.从表中数据分析,学生学习积极性与对待班级工作的态度之间有关系的把握有________.
积极参加班级工作
不太主动参加班级工作
合计
学习积极性高
18
7
25
学习积极性一般
6
19
25
合计
24
26
50
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总