题目内容

19.已知函数y=f(x)对任意自变量x都有f(x+1)=f(1-x),且函数f(x)在[1,+∞)上单调.若数列{an}是公差不为0的等差数列,且f(a6)=f(a20),则{an}的前25项之和为(  )
A.0B.$\frac{25}{2}$C.25D.50

分析 由已知得函数f(x)图象关于直线x=1对称,从而得到a6+a20=2,由此能求出结果.

解答 解:∵函数y=f(x)对任意自变量x都有f(x+1)=f(1-x),
∴函数f(x)图象关于直线x=1对称,
又函数f(x)在[1,+∞)上单调,
数列{an}是公差不为0的等差数列,且f(a6)=f(a20),
∴a6+a20=2,
∴S25=$\frac{25}{2}({a}_{1}+{a}_{25})$=$\frac{25}{2}({a}_{6}+{a}_{20})$=$\frac{25}{2}×2$=25.
故选:C.

点评 本题考查等差数列的前25项之和的求法,是中档题,注意函数性质和等差数列的性质的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网