题目内容

已知抛物线C:y2=4x,过点A(-1,0)的直线交抛物线C于P、Q两点,设
AP
AQ

(Ⅰ)若点P关于x轴的对称点为M,求证:直线MQ经过抛物线C的焦点F;
(Ⅱ)若λ∈[
1
3
1
2
]求当|PQ|最大时,直线PQ的方程.
分析:(Ⅰ)设出P和Q的坐标,根据P和M关于x轴对称表示出M的坐标,利用设出的坐标表示出
AP
AQ
,根据
AP
AQ
,化简即可得到P和Q的横坐标,然后由抛物线的方程找出焦点F的坐标,然后利用M,F和Q的坐标表示出向量
MF
,利用刚才化简的式子及求出的横坐标代入即可得到
MF
FQ
,所以得到直线MQ过F点;
(Ⅱ)由第一问求得的P和Q的横坐标相乘等于1,由y12-y22=16x1x2=16,y1y2>0,得到y1y2的值,利用两点间的距离公式表示出|PQ|2,然后把P和Q的横坐标及得到的y1y2的值及x1x2的值分别代入得到关于λ的关系式,配方后利用λ的范围求出λ+
1
λ
的范围,即可求出λ+
1
λ
的最大值,让其等于最大值解出此时λ的值,把λ的值代入关于λ的关系式即可求出|PQ|2的最大值,即得到|PQ|最大值,并利用λ的值求出此时P和Q两点的坐标,根据两点的坐标即可写出直线PQ的方程.
解答:解:(Ⅰ)设P(x1,y1),Q(x2,y2),M(x1,-y1
AP
AQ

∴x1+1=λ(x2+1),y1=λy2,∴y122y22,y12=4x1,y22=4x2,x12x2
∴λ2x2+1=λ(x2+1),λx2(λ-1)=(λ-1)
∵λ≠1,∴x2=
1
λ
,x1=λ,
由抛物线C:y2=4x,得到F(1,0),
MF
=(1-x1,y1)=(1-λ,λy2)=λ(
1
λ
-1,y2)=λ
FQ

∴直线MQ经过抛物线C的焦点F;
(Ⅱ)由(Ⅰ)知x2=
1
λ
,x1=λ,得x1x2=1,y12y22=16x1x2=16,y1y2>0,y1y2=4,
则|PQ|2=(x1-x22+(y1-y22=x12+x22+y12+y22-2(x1x2+y1y2)=(λ+
1
λ
2+4(λ+
1
λ
)-12=(λ+
1
λ
+2)2-16
λ∈[
1
3
1
2
],λ+
1
λ
∈[
5
2
10
3
],
当λ+
1
λ
=
10
3
,即λ=
1
3
时,|PQ|2有最大值
112
9
,则|PQ|的最大值为
4
7
3

此时Q(3,±2
3
),P(
1
3
,±
2
3
3
),
kPQ
2
3
-
2
3
3
3-
1
3
3
2

则直线PQ的方程为:
3
x±2y+
3
=0
点评:此题考查学生掌握抛物线的简单性质,会根据两点的坐标求直线的方程,会进行向量的运算,是一道中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网