题目内容
(2012•昌平区一模)已知函数f(x)=lnx+
+ax,x∈(0,+∞)(a为实常数).
(1)当a=0时,求函数f(x)的最小值;
(2)若函数f(x)在[2,+∞)上是单调函数,求a的取值范围.
1 | x |
(1)当a=0时,求函数f(x)的最小值;
(2)若函数f(x)在[2,+∞)上是单调函数,求a的取值范围.
分析:(1)利用导数,确定函数的单调性,从而确定函数f(x)的最小值;
(2)先求导函数,再分别考虑导数大于0与小于0,分类讨论即可.当a≥0时,ax2+x-1在[2,+∞)上恒大于零,即f'(x)>0,符合要求;当a<0时,令g(x)=ax2+x-1,g (x)在[2,+∞)上只能恒小于零
(2)先求导函数,再分别考虑导数大于0与小于0,分类讨论即可.当a≥0时,ax2+x-1在[2,+∞)上恒大于零,即f'(x)>0,符合要求;当a<0时,令g(x)=ax2+x-1,g (x)在[2,+∞)上只能恒小于零
解答:解:(1)a=0时,f′(x)=
…..(2分)
当0<x<1时f'(x)<0,
当x>1时f'(x)>0,…..(5分)
∴f(x)min=f(1)=1….(7分)
(2)f′(x)=
-
+a=
当a≥0时,ax2+x-1在[2,+∞)上恒大于零,即f'(x)>0,符合要求;…(10分)
当a<0时,令g(x)=ax2+x-1,g (x)在[2,+∞)上只能恒小于零
故△=1+4a≤0或
,解得:a≤-
∴a的取值范围是(-∞,-
]∪[0,+∞)…(14分)
x-1 |
x2 |
当0<x<1时f'(x)<0,
当x>1时f'(x)>0,…..(5分)
∴f(x)min=f(1)=1….(7分)
(2)f′(x)=
1 |
x |
1 |
x2 |
ax2+x-1 |
x2 |
当a≥0时,ax2+x-1在[2,+∞)上恒大于零,即f'(x)>0,符合要求;…(10分)
当a<0时,令g(x)=ax2+x-1,g (x)在[2,+∞)上只能恒小于零
故△=1+4a≤0或
|
1 |
4 |
∴a的取值范围是(-∞,-
1 |
4 |
点评:本题以函数为载体,考查导函数,考查函数的单调性,注意分类讨论.
练习册系列答案
相关题目