题目内容
(2012•昌平区一模)如图在四棱锥P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,垂足为点A,PA=AB=2,点M,N分别是PD,PB的中点.
(I)求证:PB∥平面ACM;
(II)求证:MN⊥平面PAC;
(III)求四面体A-MBC的体积.
(I)求证:PB∥平面ACM;
(II)求证:MN⊥平面PAC;
(III)求四面体A-MBC的体积.
分析:(I)证明PB∥平面ACM,利用线面平行的判定定理,只需证明线线平行,利用三角形的中位线可得MO∥PB;
(II)证明MN⊥平面PAC,由于MN∥BD,只要证明BD⊥平面PAC,利用线面垂直的判定定理,即可证得;
(III)利用等体积,即VA-MBC=VM-ABC=
•S△ABC•h,从而可得结论.
(II)证明MN⊥平面PAC,由于MN∥BD,只要证明BD⊥平面PAC,利用线面垂直的判定定理,即可证得;
(III)利用等体积,即VA-MBC=VM-ABC=
1 |
3 |
解答:证明:(I)连接AC,BD,AM,MC,MO,MN,且AC∩BD=O
∵点O,M分别是PD,BD的中点
∴MO∥PB,
∵PB?平面ACM,MO?平面ACM
∴PB∥平面ACM.…(4分)
(II)∵PA⊥平面ABCD,BD?平面ABCD
∴PA⊥BD
∵底面ABCD是正方形,∴AC⊥BD
又∵PA∩AC=A
∴BD⊥平面PAC…(7分)
在△PBD中,点M,N分别是PD,PB的中点,∴MN∥BD
∴MN⊥平面PAC.…(9分)
(III)∵VA-MBC=VM-ABC=
•S△ABC•h,h=
PA…(12分)
∴VA-MBC=
•
•AB•AD•
•PA=
.…(14分)
∵点O,M分别是PD,BD的中点
∴MO∥PB,
∵PB?平面ACM,MO?平面ACM
∴PB∥平面ACM.…(4分)
(II)∵PA⊥平面ABCD,BD?平面ABCD
∴PA⊥BD
∵底面ABCD是正方形,∴AC⊥BD
又∵PA∩AC=A
∴BD⊥平面PAC…(7分)
在△PBD中,点M,N分别是PD,PB的中点,∴MN∥BD
∴MN⊥平面PAC.…(9分)
(III)∵VA-MBC=VM-ABC=
1 |
3 |
1 |
2 |
∴VA-MBC=
1 |
3 |
1 |
2 |
1 |
2 |
2 |
3 |
点评:本题考查线面平行,考查线面垂直,考查三棱锥的体积,解题的关键是正确运用线面平行、线面垂直的判定方法,利用等体积法求体积.
练习册系列答案
相关题目