搜索
题目内容
设随机变量ξ的概率分布列为
(k=0,1,2,3),则
.
试题答案
相关练习册答案
试题分析:
随机变量ξ的概率分布列为
(k=0,1,2,3)
,
且
,
,即
.
练习册系列答案
8年沉淀1年突破单元同步夺冠卷系列答案
导学与测试系列答案
成龙计划高效课时学案系列答案
超能学典名牌中学期末突破一卷通系列答案
创佳绩课业巧点精练系列答案
单元期末满分大冲刺系列答案
新非凡教辅冲刺100分系列答案
全优课时作业系列答案
英才计划赢在起跑线系列答案
巧思妙算系列答案
相关题目
现有甲、乙两个靶.某射手向甲靶射击两次,每次命中的概率为
,每命中一次得1分,没有命中得0分;向乙靶射击一次,命中的概率为
,命中得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击.
(I)求该射手恰好命中两次的概率;
(II)求该射手的总得分
的分布列及数学期望
;
(x+2)
8
的展开式中x
6
的系数是( )
A.112
B.56
C.28
D.224
(1-x)
5
•(1+x)
4
的展开式中x
3
项的系数为( )
A.-6
B.-4
C.4
D.6
已知
(
x
-
2
x
2
)
n
(n∈N
*
)的展开式中第五项的系数与第三项的系数的比是10:1.
(1)求展开式中各项系数的和;
(2)求展开式中含
x
3
2
的项.
函数f(x)=C
04
x
4
+C
14
x
3
+C
24
x
2
+C
34
x+C
44
图象的对称轴方程为______.
甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛,假设每局甲获胜的概率为
,乙获胜的概率为
,各局比赛结果相互独立.
求甲在4局以内(含4局)赢得比赛的概率;
记
为比赛决出胜负时的总局数,求
的分布列和均值(数学期望).
设袋子中装有a个红球,b个黄球,c个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.
(1)当a=3,b=2,c=1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此两球所得分数之和,求ξ分布列;
(2)从该袋子中任取(且每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若E(η)=
,V(η)=
,求a∶b∶c.
某射手射击所得环数X的分布列如下:
X
7
8
9
10
P
x
0.1
0.3
y
已知X的期望E(X)=8.9,则y的值为________.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总