题目内容
已知向量a,e满足:a≠e,|e|=1,对任意t∈R,恒有|a-te|≥|a-e|,则
- A.a⊥e
- B.a⊥(a-e)
- C.e⊥(a-e)
- D.(a+e)⊥(a-e)
C
由条件可知|a-te|2≥|a-e|2对t∈R恒成立,又∵|e|=1,
∴t2-2a·e·t+2a·e-1≥0对t∈R恒成立,
即Δ=4(a·e)2-8a·e+4≤0恒成立.
∴(a·e-1)2≤0恒成立,
而(a·e-1)2≥0,∴a·e-1=0.
即a·e=1=e2,∴e·(a-e)=0,即e⊥(a-e).
由条件可知|a-te|2≥|a-e|2对t∈R恒成立,又∵|e|=1,
∴t2-2a·e·t+2a·e-1≥0对t∈R恒成立,
即Δ=4(a·e)2-8a·e+4≤0恒成立.
∴(a·e-1)2≤0恒成立,
而(a·e-1)2≥0,∴a·e-1=0.
即a·e=1=e2,∴e·(a-e)=0,即e⊥(a-e).
练习册系列答案
相关题目