题目内容
已知圆
,
(Ⅰ)若过定点(
)的直线
与圆
相切,求直线
的方程;
(Ⅱ)若过定点(
)且倾斜角为
的直线
与圆
相交于
两点,求线段
的中点
的坐标;
(Ⅲ) 问是否存在斜率为
的直线
,使
被圆
截得的弦为
,且以
为直径的圆经过原点?若存在,请写出求直线
的方程;若不存在,请说明理由。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033723396871.png)
(Ⅰ)若过定点(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033723412397.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033723427280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033723443313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033723427280.png)
(Ⅱ)若过定点(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033723474344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033723490420.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033723427280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033723443313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033723521423.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033723536396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033723552289.png)
(Ⅲ) 问是否存在斜率为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033723552206.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033723427280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033723427280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033723443313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033723692386.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033723692386.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033723427280.png)
(Ⅰ)
,(Ⅱ)
(Ⅲ)![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033723802722.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033723755843.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033723755942.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033723802722.png)
试题分析:(Ⅰ)求过定点直线方程,要注意斜率不存在情况是否满足题意,本题可分类讨论,也可从设法上考虑斜率不存在,即设直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033723427280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033723833593.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033723427280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033723864578.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033723895644.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033723692386.png)
试题解析:(Ⅰ)根据题意,设直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033723427280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033723833593.png)
联立直线与圆的方程并整理得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240337239581148.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033723973770.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240337240041127.png)
从而,直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033723427280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033723755843.png)
(Ⅱ)根据题意,设直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033723427280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033723864578.png)
代入圆
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033723443313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033724160978.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033724176426.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033724192922.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033724207907.png)
所以点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033723552289.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033723755942.png)
(Ⅲ)假设存在这样的直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033723427280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033724254505.png)
联立圆的方程并整理得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240337242851026.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033724301883.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033724316865.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033724348974.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240337243631301.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240337243791026.png)
因为以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033723692386.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240337244261337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240337244411421.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033724457725.png)
所以直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033723427280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033723802722.png)
(Ⅲ)法二:可以设圆系方程
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240337245041213.png)
则圆心坐标
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033724535878.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033724254505.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目