题目内容

设m,n是不同的直线,α,β,γ是不同的平面,有以下四个命题:
α∥β
α∥γ
?β∥γ

α⊥β
m∥α
?m⊥β

m⊥α
m∥β
?α⊥β

m∥n
n?α
?m∥α

其中,真命题是(  )
A、①④B、②③C、①③D、②④
分析:对每一选支进行逐一判定,不正确的只需取出反例,正确的证明一下即可.
解答:精英家教网解:
对于①利用平面与平面平行的性质定理可证α∥β,α∥γ,则β∥γ,正确
对于②面BD⊥面D1C,A1B1∥面BD,此时A1B1∥面D1C,不正确
对应③∵m∥β∴β内有一直线与m平行,而m⊥α,
根据面面垂直的判定定理可知α⊥β,故正确
对应④m有可能在平面α内,故不正确,
故选C
点评:本题主要考查了平面与平面之间的位置关系,以及空间中直线与平面之间的位置关系,考查空间想象能力、运算能力和推理论证能力,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网