题目内容
15.(1)化简:$\frac{sin(π-α)cos(3π-α)tan(-α-π)tan(α-2π)}{tan(4π-α)sin(5π+α)}$(2)已知tanα=3,计算 $\frac{4sinα-2cosα}{5cosα+3sinα}$的值.
分析 (1)由条件利用诱导公式化简所给的式子,可得结果.
(2)由条件利用同角三角函数的基本关系,求得所给式子的值.
解答 解:(1)$\frac{sin(π-α)cos(3π-α)tan(-α-π)tan(α-2π)}{tan(4π-α)sin(5π+a)}$=$\frac{sinα•(-cosα)•(-tanα)•tanα}{-tanα•(-sinα)}$
=cosα•tanα=sinα.
(2)已知tanα=3,∴$\frac{4sinα-2cosα}{5cosα+3sinα}$=$\frac{4tanα-2}{5+3tanα}$=$\frac{12-2}{5+9}$=$\frac{5}{7}$.
点评 本题主要考查诱导公式、同角三角函数的基本关系,属于基础题.
练习册系列答案
相关题目
6.下面为一个求20个数的平均数的程序,在横线上应填充的语句为( )
A. | i>20 | B. | i<20 | C. | i>=20 | D. | i<=20 |
3.某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:
A配方的频数分布表
B配方的频数分布表
(1)分别估计用A配方,B配方生产的产品的优质品率;
(2)已知用B配方生产的一件产品的利润y(单位:元)与其质量指标值t的关系式为y=$\left\{\begin{array}{l}{-2,t<94}\\{2,94≤t<102}\\{4,t≥102}\end{array}\right.$
估计用B配方生产的一件产品的利润大于0的概率,并求用B配方生产的上述100件产品平均一件的利润.
A配方的频数分布表
指标值分组 | [90,94) | [94,98) | [98,102) | [102,106) | [106,110] |
频数 | 8 | 20 | 42 | 22 | 8 |
指标值分组 | [90,94) | [94,98) | [98,102) | [102,106) | [106,110] |
频数 | 4 | 12 | 42 | 32 | 10 |
(2)已知用B配方生产的一件产品的利润y(单位:元)与其质量指标值t的关系式为y=$\left\{\begin{array}{l}{-2,t<94}\\{2,94≤t<102}\\{4,t≥102}\end{array}\right.$
估计用B配方生产的一件产品的利润大于0的概率,并求用B配方生产的上述100件产品平均一件的利润.
10.函数f(x)的定义域为{x|x≠0},f(x)>0.满足f(x•y)=f(x)•f(y),且在区间(0,+∞)上单调递增,若m满足f(log3m)+f(log${\;}_{\frac{1}{3}}$m)≤2f(1),则实数m的取值范围是( )
A. | [1,3] | B. | (0,$\frac{1}{3}$] | C. | [0,$\frac{1}{3}$﹚∪(1,3] | D. | [$\frac{1}{3}$,1)∪(1,3] |
20.复数i+i2在复平面内表示的点在( )
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |