题目内容
【题目】如图,棱长为1的正方体中,是线段上的动点,则下列结论正确的是( ).
①异面直线与所成的角为
②
③三棱锥的体积为定值
④的最小值为2.
A.①②③B.①②④C.③④D.②③④
【答案】A
【解析】
①根据异面直线所成的角的定义即可判断;
②由线面垂直的性质即可判断;
③先求得M到平面DCC1D1的距离再利用锥体体积公式求解;
④将问题转化为平面图形中线段AD1的长度,利用余弦定理解三角形解得即可判断.
①∵∥BC,
∴异面直线与所成的角即为BC与所成的角,
可得夹角为,故①正确;
②连接,
∵平面A1BCD1,
平面A1BCD1,
∴,
故②正确;
③∵∥平面DCC1D1,
∴线段A1B上的点M到平面DCC1D1的距离都为1,
又△DCC1的面积为定值,
因此三棱锥MDCC1的体积为定值,
故③正确;
④将面AA1B与面A1BCD1沿A1B展成平面图形,线段AD1即为AP+PD1的最小值,
在△D1A1A中,∠D1A1A=135°,
利用余弦定理解三角形得,
故④不正确.
因此只有①②③正确.
故选:A.
练习册系列答案
相关题目
【题目】某农科站技术员为了解某品种树苗的生长情况,在该批树苗中随机抽取一个容量为的样本,测量树苗高度(单位:).经统计,高度均在区间内,将其按,,,,,分成组,制成如图所示的频率分布直方图,其中高度不低于的树苗为优质树苗.
(1)求频率分布直方图中的值;
(2)已知所抽取的这棵树苗来自于甲、乙两个地区,部分数据如下列联表所示,将列联表补充完整,并根据列联表判断是否有的把握认为优质树苗与地区有关?
甲地区 | 乙地区 | ||
优质树苗 | |||
非优质树苗 | |||
合计 |
附:
0.025 | 0.010 | 0.005 | 0.001 | |
5.024 | 6.635 | 7.879 | 10.828 |