题目内容

一个小服装厂生产某种风衣,月销售量x(件)与售价P(元/件)之间的关系为P=160-2x,生产x件的成本R=500+30x元.
(1)该厂的月产量多大时,月获得的利润不少于1300元?
(2)当月产量为多少时,可获得最大利润?最大利润是多少元?
答案见解析
解:(1)设该厂的月获利为y,依题意得y=(160-2x)x-(500+30x)=-2x2+130x-500
y≥1300知-2x2+130x-500≥1300
x2-65x+900≤0,∴(x-20)(x-45)≤0,解得20≤x≤45
∴当月产量在20~45件之间时,月获利不少于1300元.
(2)由(1)知y=-2x2+130x-500=-2(x)2+1612.5
x为正整数,∴x=32或33时,y取得最大值为1612元,
∴当月产量为32件或33件时,可获得最大利润1612元.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网