题目内容
已知命题:平面上一矩形ABCD的对角线AC与边AB和AD所成角分别为α、β,则cos2α+cos2β=1.若把它推广到空间长方体中,试写出相应的命题形式: .
【答案】分析:本题考查的知识点是类比推理,由在长方形中,设一条对角线与其一顶点出发的两条边所成的角分别是α,β,则有cos2α+cos2β=1,我们根据平面性质可以类比推断出空间性质,我们易得答案.
解答:解:我们将平面中的两维性质,类比推断到空间中的三维性质.
由在长方形中,设一条对角线与其一顶点出发的两条边所成的角分别是α,β,
则有cos2α+cos2β=1,
我们根据平面性质可以类比推断出空间性质,
即在长方体中,一条对角线与从某一顶点出发的三条棱所成的角分别是α,β,γ,
则有cos2α+cos2β+cos2γ=1.
故选Cos2α+cos2β+cos2γ=1
点评:本题考查的知识点是类比推理,在由平面图形的性质向空间物体的性质进行类比时,常用的思路有:由平面图形中点的性质类比推理出空间里的线的性质,由平面图形中线的性质类比推理出空间中面的性质,由平面图形中面的性质类比推理出空间中体的性质,或是将平面中的两维性质,类比推断到空间中的三维性质.
解答:解:我们将平面中的两维性质,类比推断到空间中的三维性质.
由在长方形中,设一条对角线与其一顶点出发的两条边所成的角分别是α,β,
则有cos2α+cos2β=1,
我们根据平面性质可以类比推断出空间性质,
即在长方体中,一条对角线与从某一顶点出发的三条棱所成的角分别是α,β,γ,
则有cos2α+cos2β+cos2γ=1.
故选Cos2α+cos2β+cos2γ=1
点评:本题考查的知识点是类比推理,在由平面图形的性质向空间物体的性质进行类比时,常用的思路有:由平面图形中点的性质类比推理出空间里的线的性质,由平面图形中线的性质类比推理出空间中面的性质,由平面图形中面的性质类比推理出空间中体的性质,或是将平面中的两维性质,类比推断到空间中的三维性质.
练习册系列答案
相关题目