题目内容
.内有任意三点都不共线的2009个点,加上三个顶点,共2012个点,把这2012个点连线形成互不重叠的小三角形,则一共可以形成的小三角形的个数为( )
A.4010 | B.4013 | C.4017 | D.4019 |
D
专题:计算题.
分析:根据题意,分析易得:△ABC中有1个点时,△ABC中有2个点时,△ABC中有3个点时,可以形成小三角形的个数,由归纳推理的方法可得当三角形中有n个点时,可以形成三角形的个数,将n=2009代入可得答案.
解答:解:△ABC中有1个点时,可以形成小三角形的个数为2×1+1=3个,
△ABC中有2个点时,可以形成小三角形的个数为2×2+1=5个,
△ABC中有3个点时,可以形成小三角形的个数为2×3+1=7个,
…,
分析可得,当△ABC的内部每增加一个点,可以形成小三角形的数目增加2个,
则三角形中有n个点时,三角形的个数为(2n+1)个;
当△ABC内有任意三点不共线的2009个点时,应有点2×2009+1=4019;
故选D.
点评:本题考查图形的变化规律,关键是分析得到三角形的个数与三角形内点的个数的变化规律.
练习册系列答案
相关题目