题目内容

已知曲线C1
x=5+t
y=2t
(t为参数),C2
x=2
3
cosθ
y=3sinθ
(θ为参数),点P,Q分别在曲线C1和C2上,求线段|PQ|长度的最小值.
C1:2x-y-10=0,Q到直线C1的距离d=
|4
3
cosθ-3sinθ-10|
5

|PQ|≥d=
|4
3
cosθ-3sinθ-10|
5
=
|
57
sin(θ-?)+10|
5
|10-
57
|
5
=
10
5
-
285
5

故所求的结果为
10
5
-
285
5
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网