题目内容
(本小题满分14分)已知,设函数
2,4,6
(1)的最小正周期为,的单调增区间为;(2)的值域为。
解析
(本小题共12分)已知函数f(t)= ](Ⅰ)将函数g(x)化简成Asin(ωx+φ)+B(A>0,ω>0,φ∈[0,2π))的形式;(Ⅱ)求函数g(x)的值域.
(本小题满分13分)已知函数(I)求函数f(x)的最小正周期和单调增区间;(Ⅱ)函数f(x)的图象可以由函数y=sin2x(x∈R)的图象经过怎样的变换得到?
已知在中,所对的边分别为,若 且.(Ⅰ)求角A、B、C的大小;(Ⅱ)设函数,求函数的单调递增区间,并指出它相邻两对称轴间的距离.
(本大题12分)已知函数.(Ⅰ)求的最小正周期,并求其单调递增区间;(Ⅱ)当时,求的值域.
(本小题满分14分)已知函数,(1) 求函数的最小正周期及取得最小值的x的集合;(2) 求函数的单调递增区间.(3)求在处的切线方程.
(本小题满分14分)已知向量,函数·,且最小正周期为.(1)求的值; (2)设,求的值. (3)若,求函数f(x)的值域;
(本题满分12分)已知两个向量,,其中,且满足.(Ⅰ)求的值; (Ⅱ)求的值.
(本小题满分12分)已知函数>0,>0,<的图象与轴的交点为(0,1),它在轴右侧的第一个最高点和第一个最低点的坐标分别为和(1)写出的解析式及的值;(2)若锐角满足,求的值.