题目内容
已知数列{}的前n项和,数列{}满足=.
(I)求证数列{}是等差数列,并求数列{}的通项公式;
(Ⅱ)设,数列{}的前n项和为Tn,求满足的n的最大值.
(1)
(2) 的最大值为4.
解析试题分析:解:(Ⅰ)在中,令n=1,可得,即.
当时,∴, …∴,即.∵,∴,即当时,. ……又,∴数列{bn}是首项和公差均为1的等差数列.
于是,∴. 6分
(Ⅱ)∵,
∴, 8分
∴=. …10分
由,得,即,
单调递减,∵,
∴的最大值为4. 12分
考点:数列的概念和通项公式的求解
点评:主要是考查了数列的通项公式的求解,以及数列求和的运用,属于基础题。
练习册系列答案
相关题目