题目内容
【题目】某学校高三年级有两个文科班,四个理科班,现每个班指定1人,对各班的卫生进行检查.若每班只安排一人检查,且文科班学生不检查文科班,理科班学生不检查自己所在的班,则不同安排方法的种数是( )
A.48B.72C.84D.168
【答案】D
【解析】
分两步,第一步选2名理科班的学生检查文科班,第二步,理科班检查的方法,需要分三类,根据分布和分类计数原理可得.
第一步:选2名理科班的学生检查文科班,有种
第二步:分三类
①2名文科班的学生检查剩下的2名理科生所在的班级,2名理科生检查
另2名理科生所在的班级,有种
②2名文科班的学生检查去文科班检查的2名理科生所在班级,剩下的2名理科生
互查所在的班级,有种
③2名文科生一人去检查去文科班检查的2名理科生所在的班级的一个和一人去
检查剩下的2名理科生其中一个所在的班级,有种
根据分步分类技术原理可得,共有不同的安排方法
故选:D
【题目】某厂生产不同规格的一种产品,根据检测标准,其合格产品的质量与尺寸x(mm)之间近似满足关系式(b、c为大于0的常数).按照某项指标测定,当产品质量与尺寸的比在区间内时为优等品.现随机抽取6件合格产品,测得数据如下:
尺寸x(mm) | 38 | 48 | 58 | 68 | 78 | 88 |
质量y (g) | 16.8 | 18.8 | 20.7 | 22.4 | 24 | 25.5 |
质量与尺寸的比 | 0.442 | 0.392 | 0.357 | 0.329 | 0.308 | 0.290 |
(Ⅰ)现从抽取的6件合格产品中再任选3件,记为取到优等品的件数,试求随机变量的分布列和期望;
(Ⅱ)根据测得数据作了初步处理,得相关统计量的值如下表:
75.3 | 24.6 | 18.3 | 101.4 |
(ⅰ)根据所给统计量,求y关于x的回归方程;
(ⅱ)已知优等品的收益(单位:千元)与的关系为,则当优等品的尺寸x为何值时,收益的预报值最大?(精确到0.1)
附:对于样本 ,其回归直线的斜率和截距的最小二乘估计公式分别为:,,.