题目内容
【题目】已知函数f(x)=xlnx,g(x)=,
(1)求f(x)的最小值;
(2)对任意,都有恒成立,求实数a的取值范围;
(3)证明:对一切,都有成立.
【答案】(1) (2)( (3)见证明
【解析】
(1)先求函数导数,再求导函数零点,列表分析导函数符号变化规律确定函数单调性,最后根据函数单调性确定最小值取法;(2)先分离不等式,转化为对应函数最值问题,利用导数求对应函数最值即得结果;(3)构造两个函数,再利用两函数最值关系进行证明.
(1)
当时,单调递减,当时,单调递增,所以函数f(x)的最小值为f()=;
(2)因为所以问题等价于在上恒成立,
记则,
因为,
令
函数f(x)在(0,1)上单调递减;
函数f(x)在(1,+)上单调递增;
即,
即实数a的取值范围为(.
(3)问题等价于证明
由(1)知道
,令
函数在(0,1)上单调递增;
函数在(1,+)上单调递减;
所以{,
因此,因为两个等号不能同时取得,所以
即对一切,都有成立.
练习册系列答案
相关题目
【题目】某快递公司收取快递费用的标准是:重量不超过的包裹收费元;重量超过的包裹,除收费元之外,超过的部分,每超出(不足,按计算)需再收元.
该公司将近天,每天揽件数量统计如下:
包裹件数范围 | |||||
包裹件数 (近似处理) | |||||
天数 |
(1)某人打算将, , 三件礼物随机分成两个包裹寄出,求该人支付的快递费不超过元的概率;
(2)该公司从收取的每件快递的费用中抽取元作为前台工作人员的工资和公司利润,剩余的作为其他费用.前台工作人员每人每天揽件不超过件,工资元,目前前台有工作人员人,那么,公司将前台工作人员裁员人对提高公司利润是否更有利?