题目内容
在直三棱柱ABC-A1B1C1中,AB1⊥BC1,AB=CC1=a,BC=b.(1)设E、F分别为AB1、BC1的中点,求证:EF∥平面ABC;
(2)求证:A1C1⊥AB;
(3)求点B1到平面ABC1的距离.
分析:(1)欲证EF∥平面ABC,关键在平面ABC内找一直线与EF平行,根据中位线可知EF∥A1C1而A1C1∥AC则EF∥AC;
(2)欲证A1C1⊥AB,可先证A1C1⊥平面A1ABB1,根据线面垂直的判定定理可知只需证AB1⊥A1C1,A1C1⊥AA1;
(3)过A1作A1G⊥AC1于点G,先证A1G⊥平面ABC1,从而得到A1G即为所求的距离,在三角形中求出该距离即可.
(2)欲证A1C1⊥AB,可先证A1C1⊥平面A1ABB1,根据线面垂直的判定定理可知只需证AB1⊥A1C1,A1C1⊥AA1;
(3)过A1作A1G⊥AC1于点G,先证A1G⊥平面ABC1,从而得到A1G即为所求的距离,在三角形中求出该距离即可.
解答:(1)证明:∵E、F分别为AB1、BC1的中点,
∴EF∥A1C1.∵A1C1∥AC,∴EF∥AC.
∴EF∥平面ABC.
(2)证明:∵AB=CC1,∴AB=BB1.又三棱柱为直三棱柱,∴四边形ABB1A1为正方形.连接A1B,则A1B⊥AB1.
又∵AB1⊥BC1,∴AB1⊥平面A1BC1.
∴AB1⊥A1C1.
又A1C1⊥AA1,∴A1C1⊥平面A1ABB1.
∴A1C1⊥AB.
(3)解:∵A1B1∥AB,∴A1B1∥平面ABC1.
∴A1到平面ABC1的距离等于B1到平面ABC1的距离.
过A1作A1G⊥AC1于点G,
∵AB⊥平面ACC1A1,
∴AB⊥A1G.从而A1G⊥平面ABC1,故A1G即为所求的距离,即A1G=
,
∴点B1到平面ABC1的距离
.
∴EF∥A1C1.∵A1C1∥AC,∴EF∥AC.
∴EF∥平面ABC.
(2)证明:∵AB=CC1,∴AB=BB1.又三棱柱为直三棱柱,∴四边形ABB1A1为正方形.连接A1B,则A1B⊥AB1.
又∵AB1⊥BC1,∴AB1⊥平面A1BC1.
∴AB1⊥A1C1.
又A1C1⊥AA1,∴A1C1⊥平面A1ABB1.
∴A1C1⊥AB.
(3)解:∵A1B1∥AB,∴A1B1∥平面ABC1.
∴A1到平面ABC1的距离等于B1到平面ABC1的距离.
过A1作A1G⊥AC1于点G,
∵AB⊥平面ACC1A1,
∴AB⊥A1G.从而A1G⊥平面ABC1,故A1G即为所求的距离,即A1G=
a |
b |
b2-a2 |
∴点B1到平面ABC1的距离
a |
b |
b2-a2 |
点评:本题主要考查了直线与平面平行的判定,以及点、线、面间的距离计算等有关知识,属于基础题.
练习册系列答案
相关题目