题目内容

某厂生产某种产品的年固定成本为万元,每生产千件,需另投入成本为.当年产量不足千件时,(万元).当年产量不小于千件时,(万元).每件商品售价为万元.通过市场分析,该厂生产的商品能全部售完.
(1)写出年利润(万元)关于年产量(千件)的函数解析式;
(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?

(1)
(2)当产量为100 千件时,该厂在这一商品中所获利润最大,最大利润为1000 万元.

解析试题分析:(1)根据题意分时,时,分别确定函数的解析式,得到分段函数以
(2)分别确定时,,时,函数的最大值,并加以比较.确定函数的最大值时,应用了二次函数的性质及基本不等式.
试题解析:
(1) 因为每件商品售价为万元,则千件商品销售额为0.05×1000x万元,依题意得:
时,
=                    2分
时,
.                          4分
                   6分
(2)当时,.
此时,当时,取得最大值万元.             9分
时,
此时,当时,即时,取得最大值1000万元.     12分

所以,当产量为100 千件时,该厂在这一商品中所获利润最大,最大利润为1000万元.      13分
考点:函数应用问题,分段函数,二次函数的性质,基本不等式.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网