题目内容

9.已知集合$A=\{x∈R|y=\frac{1}{{\sqrt{x-1}}}\},B=\{y|y=x+\frac{1}{x},x∈R且x≠0\}$,则(CRB)∩A=(  )
A.(1,+∞)B.[-2,2)C.(-2,2)D.(1,2)

分析 直接求根式不等式得到集合A,然后分类讨论当x>0时,x<0时得到集合B,再求出CRB,则答案可求.

解答 解:由集合A中的函数y=$\frac{1}{\sqrt{x-1}}$,得到x-1>0,即x>1,
∴集合A=(1,+∞).
由集合B中的函数y=x+$\frac{1}{x}$,
当x>0时,x+$\frac{1}{x}$≥2;
当x<0时,-x>0,-(x+$\frac{1}{x}$)=(-x)+(-$\frac{1}{x}$)≥2,此时x+$\frac{1}{x}$≤-2,
综上,集合B=(-∞,-2]∪[2,+∞),又全集为R,
∴CRB=(-2,2),
则(CRB)∩A=(-2,2)∩(1,+∞)=(1,2).
故选:D.

点评 本题考查了交、并、补集的混合运算,考查了不等式的解法,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网