题目内容

已知向量a=(2,1),b=(x,y).
(1)若x∈{-1,0,1,2},y∈{-1,0,1},求向量a∥b的概率;
(2)若x∈[-1,2],y∈[-1,1],求向量a,b的夹角是钝角的概率.
(1)   (2)
(1)设“a∥b”为事件A,由a∥b,得x=2y.
基本事件空间为Ω={(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),(2,-1),(2,0),(2,1)},共包含12个基本事件;
其中A={(0,0),(2,1)},包含2个基本事件.

则P(A)=,即向量a∥b的概率为
(2)设“a,b的夹角是钝角”为事件B,由a,b的夹角是钝角,可得a·b<0,即2x+y<0,且x≠2y.基本事件空间为Ω={(x,y)| },
B={(x,y)| },
则由图可知,P(B)=
即向量a,b的夹角是钝角的概率是
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网