题目内容

【题目】已知正项数列{an}的前n项和为Sn , 对任意n∈N* , 点(an , Sn)都在函数 的图象上.
(1)求数列{an}的首项a1和通项公式an
(2)若数列{bn}满足 ,求数列{bn}的前n项和Tn
(3)已知数列{cn}满足 .若对任意n∈N* , 存在 ,使得c1+c2+…+cn≤f(x)﹣a成立,求实数a的取值范围.

【答案】
(1)解:由题知,当n=1时,a1=S1= a12+ a1,所以a1=1(0舍去).

Sn= an2+ an,所以Sn+1= an+12+ an+1,两式相减得到

(an+1+an)(an+1﹣an﹣1)=0,

因为正项数列{an},所以an+1﹣an=1,

数列{an}是以1为首项,1为公差的等差数列,所以an=n.


(2)解:由(1)知an=n,{bn}满足 =n+log2(2n﹣1),

所以bn=(2n﹣1)2n

因此前n项和Tn=121+322+523+…+(2n﹣1)2n,①

2Tn=122+323+524+…+(2n﹣1)2n+1,②

由①﹣②得到﹣Tn=2+2(22+23+…+2n)﹣(2n﹣1)2n+1

=2+2 ﹣(2n﹣1)2n+1=﹣6+(3﹣2n)2n+1

所以Tn=6+(2n﹣3)2n+1


(3)解:由(2)知Tn=6+(2n﹣3)2n+1

= = ﹣( ).

令Mn为数列{cn}的前n项和,

易得Mn= ﹣(1﹣ + +…+ )=

因为c1=0,c2>0,c3>0,c4>0,当n≥5时,cn= [ ﹣1],

= >0,得到

<1,所以当n≥5时,cn<0,所以Mn≤M4= =

又x∈[﹣ ],f(x)﹣a= x2+ x﹣a递增,可得其最大值为 ﹣a.

因为对任意的n∈N*,存在x0∈[﹣ ],使得Mn≤f(x)﹣a成立.

所以 ﹣a,

解得a≤


【解析】(1)运用数列的递推式,令n=1,求出首项;再将n换为n+1,两式相减,化简即可得到所求通项公式;(2)运用对数的运算性质可得bn=(2n﹣1)2n , 再由数列的求和方法:错位相减法,结合等比数列的求和公式,计算即可得到所求和;(3)求得 = = ﹣( ).运用分组求和和裂项相消求和,可得Mn= .讨论{Mn}的单调性,可得最大值M4 , 求得f(x)﹣a的最大值,由题意可得a的不等式,解不等式即可得到所求范围.
【考点精析】解答此题的关键在于理解数列的前n项和的相关知识,掌握数列{an}的前n项和sn与通项an的关系,以及对数列的通项公式的理解,了解如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网