题目内容

已知直线lykx+2(k为常数)过椭圆=1(ab>0)的上顶点B和左焦点F,直线l被圆x2y2=4截得的弦长为d.
(1)若d=2,求k的值;
(2)若d,求椭圆离心率e的取值范围.

(1)(2)0<e≤.

解析试题分析:解:(1)取弦的中点为M,连结OM由平面几何知识,OM=1,

OM==1.解得k2=3,k.
∵直线过FB,∴k>0,则k=.
(2)设弦的中点为M,连结OM,则OM2=
d2=4(4-)≥()2,解得k2.
e2=,∴0<e≤.
考点:椭圆的性质
点评:解决的关键是利用距离公式以及平面几何知识来得到不等式,点在椭圆内,求解k的范围,属于基础题。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网