题目内容

16.如图,在三棱锥P-ABC中,AB=AC,D是BC的中点,PO⊥平面ABC,垂足O落在线段AD上,已知BC=8,PO=4,AO=3,OD=2.
(1)求证:AP⊥BC;
(2)若点M是线段AP是哪个一点,且AM=3.试证明平面AMC⊥平面BMC.

分析 (1)根据题意,建立如图所示的空间坐标系,利用坐标表示出$\overrightarrow{AP}$、$\overrightarrow{BC}$,证明$\overrightarrow{AP}$⊥$\overrightarrow{BC}$即可;
(2)根据M为AP上一点,且AM=3,求出点M的坐标,再求出平面BMC与平面AMC的法向量,
利用法向量证明平面AMC⊥平面BMC.

解答 解:以O为原点,以AD方向为Y轴正方向,以射线OP的方向为Z轴正方向,建立空间坐标系,
如图所示;
则O(0,0,0),A(0,-3,0),B(4,2,0),C(-4,2,0),P(0,0,4)
(1)$\overrightarrow{AP}$=(0,3,4),$\overrightarrow{BC}$=(-8,0,0),
∴$\overrightarrow{AP}$•$\overrightarrow{BC}$=0×(-8)+3×0+4×0=0,
∴$\overrightarrow{AP}$⊥$\overrightarrow{BC}$,即AP⊥BC;
(2)∵M为AP上一点,且AM=3,
∴M(0,-$\frac{6}{5}$,$\frac{12}{5}$),
∴$\overrightarrow{AM}$=(0,$\frac{9}{5}$,$\frac{12}{5}$),
$\overrightarrow{BM}$=(-4,-$\frac{16}{5}$,$\frac{12}{5}$),
$\overrightarrow{CM}$=(4,-$\frac{16}{5}$,$\frac{12}{5}$);
设平面BMC的法向量为$\overrightarrow{n}$=(a,b,c),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{BM}=0}\\{\overrightarrow{n}•\overrightarrow{CM}=0}\end{array}\right.$,
即$\left\{\begin{array}{l}{-4a-\frac{16}{5}b+\frac{12}{5}c=0}\\{4a-\frac{16}{5}b+\frac{12}{5}c=0}\end{array}\right.$,
令b=1,则$\overrightarrow{n}$=(0,1,$\frac{4}{3}$);
设平面AMC的法向量为$\overrightarrow{m}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{AM}=0}\\{\overrightarrow{m}•\overrightarrow{AN}=0}\end{array}\right.$,
即$\left\{\begin{array}{l}{\frac{9}{5}y+\frac{12}{5}z=0}\\{4x-\frac{16}{5}y+\frac{12}{5}z=0}\end{array}\right.$,
令x=5,
则$\overrightarrow{m}$=(5,4,-3);
由$\overrightarrow{n}$•$\overrightarrow{m}$=0×5+1×4+$\frac{4}{3}$×(-3)=0,
得$\overrightarrow{n}$⊥$\overrightarrow{m}$;即平面AMC⊥平面BMC.

点评 本题考查了线线垂直与面面垂直的判定与应用问题,解题时可以建立空间坐标系,把垂直问题转化为向量垂直即数量积为0来解答,是综合性题目.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网