题目内容
(10分)(本题192班必做题,其他班不做)
已知二次函数f(x)=ax2+bx+c,若f(x)+f(x+1)=2x2-2x+13
(1)求函数f(x)的解析式;
(2)画该函数的图象;
(3)当x∈[t,5]时,求函数f(x)的最大值.
已知二次函数f(x)=ax2+bx+c,若f(x)+f(x+1)=2x2-2x+13
(1)求函数f(x)的解析式;
(2)画该函数的图象;
(3)当x∈[t,5]时,求函数f(x)的最大值.
解:(1)f(x)+f(x+1)=ax2+bx+c+a(x+1)2+b(x+1)+c
=2ax2+(2a+2b)x+a+b+2c ………………………………2分
∵f(x)+f(x+1)=2x2-2x+13
∴f(x)=x2-2x+7……………… 6分
(2)
………………………8分
(3)当-3≤t≤5时,函数f(x)的最大值为22
当t<-3时,函数f(x)的最大值为t2-2t+7 ……………………… 12分
=2ax2+(2a+2b)x+a+b+2c ………………………………2分
∵f(x)+f(x+1)=2x2-2x+13
∴f(x)=x2-2x+7……………… 6分
(2)
………………………8分
(3)当-3≤t≤5时,函数f(x)的最大值为22
当t<-3时,函数f(x)的最大值为t2-2t+7 ……………………… 12分
略
练习册系列答案
相关题目