题目内容

设函数的定义域为,若存在闭区间,使得函数满足:①上是单调函数;②上的值域是,则称区间是函数的“和谐区间”.下列结论错误的是(   )

A.函数)存在“和谐区间”
B.函数)不存在“和谐区间”
C.函数)存在“和谐区间”
D.函数)不存在“和谐区间”

B

解析试题分析:根据“和谐区间”的定义,我们只要寻找到符合条件的区间即可,对函数),“和谐区间”,函数是增函数,若存在“和谐区间” ,则,因为方程有两个不等实根,故,即区间是函数的“和谐区间”,B错误,选B,根据选择题的特征,下面C,D显然应该是正确的(事实上, 函数)的“和谐区间”为在其定义域内是单调增函数,若有“和谐区间”,则方程有两个不等实根,但此方程无实根,因此函数不存在“和谐区间”).
考点:新定义的理解,函数的单调性,方程的解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网