题目内容

(本小题满分12分)
已知函数f(x)=2sinωx·cos(ωx+)+(ω>0)的最小正周期为4π.
(1)求正实数ω的值;
(2)在△ABC中,内角A、B、C的对边分别为a、b、c,且满足2bcosA=acosC+ccosA,求f(A)的值.
(1)ω=.
(2)f(A)=sin(×+)=sin=.
解:(1)∵f(x)=2sinωx(cosωx·cossinωx·sin)+(2分)
sinωxcosωx-sin2ωx+
sin2ωx-(1-cos2ωx)+=sin(2ωx+).(5分)
又f(x)的最小正周期T==4π,则ω=.(6分)
(2)由2bcosA=acosC+ccosA及正弦定理可得2sinBcosA=sinAcosC+sinCcosA=sin(A+C).
又A+B+C=π,则2sinBcosA=sinB.(8分)
sinB≠0,则cosA=.又A∈(0,π),故A=.(10分)
由(1)f(x)=sin(+),从而f(A)=sin(×+)=sin=.(12分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网