题目内容
(本小题满分12分)
已知平面直角坐标系中,
,
,
,
.
(Ⅰ)求
的最小正周期和对称中心;
(Ⅱ)求
在区间
上的单调递增区间.
已知平面直角坐标系中,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235606977651.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235607008471.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235607024683.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235607039712.png)
(Ⅰ)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235607055447.png)
(Ⅱ)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235607055447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235607086511.png)
(Ⅰ)故最小正周期为
,对称中心是
;
(Ⅱ)
的递增区间为
和
。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235607117395.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235607133880.png)
(Ⅱ)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235607055447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235607164523.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235607195619.png)
试题分析:(I)先根据向量的坐标的加法运算法则求出向量
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235607211395.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235607039712.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235607258988.png)
从而可得其周期为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235607117395.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235607289746.png)
(II)由正弦函数的单调增区间可知当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232356073051164.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235607055447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235607367612.png)
(Ⅰ)由题设知,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235607383835.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235607398565.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235607414677.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235607429747.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235607039712.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235607476849.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235607492805.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235607258988.png)
故最小正周期为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235607117395.png)
对称中心横坐标满足
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235607554812.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235607585787.png)
对称中心是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235607133880.png)
(Ⅱ)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232356073051164.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235607055447.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232356076631153.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235607367612.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235607055447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235607164523.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235607195619.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235607773938.png)
点评:掌握向量的坐标运算是解好本题的前题,理解并把握
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235607773938.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目