题目内容
【题目】某学校为倡导全体学生为特困学生捐款,举行“一元钱,一片心,诚信用水”活动,学生在购水处每领取一瓶矿泉水,便自觉向捐款箱中至少投入一元钱,现统计了连续天的售出和收益情况,如下表:
售出水量(单位:箱) | |||||
收益(单位:元) |
(1)若每天售出箱水,求预计收益是多少元?
(2)期中考试以后,学校决定将诚信用水的收益,以奖学金的形式奖励给品学兼优的特困生,规定:特困生考入年级前名,获一等奖学金元;考入年级前名,获二等奖学金元;考入年级名以后的特困生不获得奖学金。甲、乙两名学生获一等奖学金的概率均为,获二等奖学金的概率均为,不获得奖学金的概率均为.
①在学生甲获得奖学金的条件下,求他获得一等奖学金的概率;
②已知甲、乙两名学生获得哪个等第的奖学金是相互独立的,求甲、乙两名学生所获得奖学金总金额的分布列及数学期望
附:
【答案】(1) 计收益是元.
(2) ①;②分布列见解析;(元).
【解析】分析:(1)利用公式求得可得,从而求出回归方程,将代入即可得结果;(2)①设事件为“学生甲获得奖学金”,事件为“学生甲获得一等奖学金”,由,可得结果;②的取值可能为,利用独立事件的概率公式计算对应的的值,求出其分布列和期望值即可.
详解:(1)
所以
当时,(元)
即某天售出箱水的预计收益是元
(2)①设事件为“学生甲获得奖学金”,事件为“学生甲获得一等奖学金”,则
即学生甲获得奖学金的条件下,获得一等奖学金的概率为
②的取值可能为
则的分布列为
的数学期望是
(元)
【题目】某人群中各种血型的人所占的比例见下表:
血腥 | A | B | AB | O |
该血型的人所占的比例/% | 28 | 29 | 8 | 35 |
已知同种血型的人可以互相输血,O型血可以给任一种血型的人输血,任何人的血都可以输给AB型血的人,其他不同血型的人不能互相输血.该人群中的小明是B型血,若他因病需要输血,问:
(1)任找一个人,其血可以输给小明的概率是多少?
(2)任找一个人,其血不能输给小明的概率是多少?
【题目】当我们所处的北半球为冬季的时候,新西兰的惠灵顿市恰好是盛夏,因此北半球的人们冬天愿意去那里旅游,下面是一份惠灵顿机场提供的月平均气温统计表.
(月份) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
17.3 | 17.9 | 17.3 | 15.8 | 13.7 | 11.6 | 10.06 | 9.5 | 10.06 | 11.6 | 13.7 | 15.8 |
(1)根据这个统计表提供的数据,为惠灵顿市的月平均气温作出一个函数模型;
(2)当自然气温不低于13.7℃时,惠灵顿市最适宜旅游,试根据你所确定的函数模型,确定惠灵顿市的最佳旅游时间.