题目内容
【题目】已如椭圆E:()的离心率为,点在E上.
(1)求E的方程:
(2)斜率不为0的直线l经过点,且与E交于P,Q两点,试问:是否存在定点C,使得?若存在,求C的坐标:若不存在,请说明理由
【答案】(1)(2)存在x轴上的定点,使得
【解析】
(1)根据椭圆离心率和过的点,得到关于,的方程组,解得,的值,从而得到椭圆的方程;(2)设存在定点,对称性可知设,根据,得到,即得,直线的方程为:与椭圆联立,得到,,从而得到和的关系式,根据对恒成立,从而得到的值.
(1)因为椭圆E的离心率,所以①,
点在椭圆上,所以②,
由①②解得,.
故E的方程为.
(2)假设存在定点,使得.
由对称性可知,点必在轴上,故可设.
因为,所以直线与直线的倾斜角互补,因此.
设直线的方程为:,,
由消去,得,
,所以,
所以,,
因为,所以,
所以,即.
整理得,
所以,即.
所以,即,对恒成立,
即对恒成立,所以.
所以存在定点,使得.
【题目】2019年电商“双十一”大战即将开始.某电商为了尽快占领市场,抢占今年“双十一”的先机,对成都地区年龄在15到75岁的人群“是否网上购物”的情况进行了调查,随机抽取了100人,其年龄频率分布表和使用网上购物的人数如下所示:(年龄单位:岁)
年龄段 | ||||||
频率 | 0.1 | 0.32 | 0.28 | 0.22 | 0.05 | 0.03 |
购物人数 | 8 | 28 | 24 | 12 | 2 | 1 |
(1)若以45岁为分界点,根据以上统计数据填写下面的列联表,并判断能否在犯错误的概率不超过0.001的前提下认为“网上购物”与年龄有关?
年龄低于45岁 | 年龄不低于45岁 | 总计 | |
使用网上购物 | |||
不使用网上购物 | |||
总计 |
(2)若从年龄在的样本中随机选取2人进行座谈,求选中的2人中恰好有1人“使用网上购物”的概率.
参考数据:
0.025 | 0.010 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
参考公式:.