题目内容
【题目】下列命题:①“”是“存在,使得成立”的充分不必要条件;②“”是“存在,使得成立”的必要条件;③“”是“不等式对一切恒成立”的充要条件. 其中所以真命题的序号是
A.③B.②③C.①②D.①③
【答案】B
【解析】
选项①当时,必存在n∈N*,使得成立,故前者是后者的充分条件,
但存在n∈N*,使得成立时,a即为当n∈N*,时的取值范围,即,故“”应是“存在n∈N*,使得成立”的充要条件,故①错误;
选项②当存在n∈N*,使得成立时,a只需大于当n∈N*,时的最小取值即可,故可得a>0,故“a>0”是“存在n∈N*,使得成立”的必要条件,故②正确;
选项③由①知,当n∈N*时的取值范围为,故当时,必有“不等式对一切n∈N*恒成立”,而要使不等式对一切n∈N*恒成立”,只需a大于的最大值即可,即a故“”是“不等式对一切n∈N*恒成立”的充要条件,③正确.
练习册系列答案
相关题目