题目内容
【题目】如图,在三棱柱中,
为正三角形,
,
,
,点
在线段
上,且
.
(1)证明:;
(2)求和平面
所成角的正弦值.
【答案】(1)证明见解析;(2)
【解析】
(1)要证明,只需证明
平面
,只需证明
,由
,
,所以
,所以
,因为
,所以
,又
,则易证.(2) 取
中点
,证明
平面
,建立空间直角坐标系,
和平面
所成角的正弦值就是
和设平面
的一个法向量
所成角的余弦值
(1)证明:由,
,所以
,所以
,
因为,所以
,
又,
.
所以平面
,所以
.
(2)解:由(1)知,又
,所以
,
又,
,所以
平面
,
平面
,所以平面
平面
.
取中点
,由
为正三角形知
,
平面
,
又平面平面
,所以
平面
,
以为坐标系原点,建立如图所示空间直角坐标系,
则,
,
,
,
,
,
,
,
,
设平面的一个法向量
,则
且
,
所以,取
,则
,
,
.
所以,
所以直线和平面
所成角的正弦值为
.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
【题目】某学校为了了解该校高三年级学生寒假在家自主学习的情况,随机对该校300名高三学生寒假的每天学习时间(单位:h)进行统计,按照,
,
,
,
的分组作出频率分布直方图如图所示.
(Ⅰ)根据频率分布直方图计算该校高三年级学生的平均每天学习时间(同一组中的数据用该组区间中点值代表);
(Ⅱ)该校规定学习时间超过4h为合格,否则不合格.已知这300名学生中男生有140人,其中合格的有70人,请补全下表,根据表中数据,能否有99.9%的把握认为该校高三年级学生的性别与学习时长合格有关?
男生 | 女生 | 总计 | |
不合格 | |||
合格 | 70 | ||
总计 | 140 | 160 | 300 |
参考公式:,其中
.
参考附表:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |