题目内容

11.增广矩阵$(\begin{array}{l}{3}&{m}&{-1}\\{n}&{1}&{0}\end{array})$的二元一次方程组的实数解为$\left\{\begin{array}{l}x=1\\ y=2\end{array}\right.$,则m+n=-4.

分析 由已知得到$\left\{\begin{array}{l}{3+2m=-1}\\{n+2=0}\end{array}\right.$,由此能求出m+n的值.

解答 解:∵增广矩阵$(\begin{array}{l}{3}&{m}&{-1}\\{n}&{1}&{0}\end{array})$的二元一次方程组的实数解为$\left\{\begin{array}{l}x=1\\ y=2\end{array}\right.$,
∴$\left\{\begin{array}{l}{3+2m=-1}\\{n+2=0}\end{array}\right.$,
解得m=-2,n=-2,
∴m+n=-4.
故答案为:-4.

点评 本题考查代数式的值的求法,是基础题,解题时要认真审题,注意增广矩阵解方程组的性质的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网