题目内容
设a>0为常数,动点M(x,y)(y≠0)分别与两定点F1(-a,0),F2(a,0)的连线的斜率之积为定值λ,若点M的轨迹是离心率为![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184239611184125/SYS201310241842396111841007_ST/0.png)
A.2
B.-2
C.3
D.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184239611184125/SYS201310241842396111841007_ST/1.png)
【答案】分析:根据题意可分别表示出动点P与两定点的连线的斜率,根据其之积为常数,求得x和y的关系式,对k的范围进行分类讨论,看k>0根据圆锥曲线的标准方程可推断出离心率,从而求得λ的值.
解答:解:依题意可知
•
=λ,整理得y2-λx2=-λa2,
当λ>0时,方程的轨迹为双曲线,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184239611184125/SYS201310241842396111841007_DA/2.png)
∴b2=λa2,c=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184239611184125/SYS201310241842396111841007_DA/3.png)
∴e=
=
=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184239611184125/SYS201310241842396111841007_DA/6.png)
∴λ=2
故选A
点评:本题主要考查了圆锥曲线的综合.考查了学生对圆锥曲线标准方程的考查和应用.
解答:解:依题意可知
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184239611184125/SYS201310241842396111841007_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184239611184125/SYS201310241842396111841007_DA/1.png)
当λ>0时,方程的轨迹为双曲线,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184239611184125/SYS201310241842396111841007_DA/2.png)
∴b2=λa2,c=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184239611184125/SYS201310241842396111841007_DA/3.png)
∴e=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184239611184125/SYS201310241842396111841007_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184239611184125/SYS201310241842396111841007_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184239611184125/SYS201310241842396111841007_DA/6.png)
∴λ=2
故选A
点评:本题主要考查了圆锥曲线的综合.考查了学生对圆锥曲线标准方程的考查和应用.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目