ÌâÄ¿ÄÚÈÝ

£¨2012•ÁÉÄþ£©Èçͼ£¬ÒÑÖªÍÖÔ²C0£º
x2
a2
+
y2
b2
=1(a£¾b£¾0£¬a£¬bΪ³£Êý)
£¬¶¯Ô²C1£ºx2+y2=
t
2
1
£¬b£¼t1£¼a
£®µãA1£¬A2·Ö±ðΪC0µÄ×óÓÒ¶¥µã£¬C1ÓëC0ÏཻÓÚA£¬B£¬C£¬DËĵ㣮
£¨I£©ÇóÖ±ÏßAA1ÓëÖ±ÏßA2B½»µãMµÄ¹ì¼£·½³Ì£»
£¨II£©É趯ԲC2£ºx2+y2=
t
2
2
ÓëC0ÏཻÓÚA'£¬B'£¬C'£¬D'Ëĵ㣬ÆäÖÐb£¼t2£¼a£¬t1¡Ùt2£®Èô¾ØÐÎABCDÓë¾ØÐÎA'B'C'D'µÄÃæ»ýÏàµÈ£¬Ö¤Ã÷£º
t
2
1
+
t
2
2
Ϊ¶¨Öµ£®
·ÖÎö£º£¨I£©Éè³öÏßA1AµÄ·½³Ì¡¢Ö±ÏßA2BµÄ·½³Ì£¬ÇóµÃ½»µãÂú×ãµÄ·½³Ì£¬ÀûÓÃAÔÚÍÖÔ²C0ÉÏ£¬»¯¼ò¼´¿ÉµÃµ½Méî¹ì¼£·½³Ì£»
£¨II£©¸ù¾Ý¾ØÐÎABCDÓë¾ØÐÎA'B'C'D'µÄÃæ»ýÏàµÈ£¬¿ÉµÃA£¬A¡ä×ø±êÖ®¼äµÄ¹Øϵ£¬ÀûÓÃA£¬A¡ä¾ùÔÚÍÖÔ²ÉÏ£¬¼´¿ÉÖ¤µÃ
t
2
1
+
t
2
2
=a2+b2Ϊ¶¨Öµ£®
½â´ð£º£¨I£©½â£ºÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
¡ßA1£¨-a£¬0£©£¬A2£¨a£¬0£©£¬ÔòÖ±ÏßA1AµÄ·½³ÌΪy=
y1
x1+a
(x+a)
¢Ù
Ö±ÏßA2BµÄ·½³ÌΪy=
-y1
x2-a
(x-a)
¢Ú
ÓÉ¢Ù¡Á¢Ú¿ÉµÃ£ºy2=
-y12
x12-a2
(x2-a2)
¢Û
¡ßA£¨x1£¬y1£©ÔÚÍÖÔ²C0ÉÏ£¬
¡à
x12
a2
+
y12
b2
=1

¡ày12=b2(1-
x12
a2
)

´úÈë¢Û¿ÉµÃ£ºy2=
-b2(1-
x12
a2
)
x12-a2
(x2-a2)

¡à
x2
a2
-
y2
b2
=1(x£¼-a£¬y£¼0)
£»
£¨II£©Ö¤Ã÷£ºÉèA¡ä£¨x3£¬y3£©£¬
¡ß¾ØÐÎABCDÓë¾ØÐÎA'B'C'D'µÄÃæ»ýÏàµÈ
¡à4|x1||y1|=4|x3||y3|
¡àx12y12=x32y32
¡ßA£¬A¡ä¾ùÔÚÍÖÔ²ÉÏ£¬
¡àb2x12(1-
x12
a2
)
=b2x32(1-
x32
a2
)

¡àx12-
x14
a2
=x32-
x34
a2

¡àa2(x12x32)= x14-x34
¡ßt1¡Ùt2£¬¡àx1¡Ùx3£®
¡àx12+x32=a2
¡ßy12=b2(1-
x12
a2
)
£¬y32=b2(1-
x32
a2
)

¡ày12+y32=b2
¡à
t
2
1
+
t
2
2
=a2+b2Ϊ¶¨Öµ£®
µãÆÀ£º±¾Ì⿼²é¹ì¼£·½³Ì£¬¿¼²é¶¨ÖµÎÊÌâµÄÖ¤Ã÷£¬½âÌâµÄ¹Ø¼üÊÇÉè³öÖ±Ïß·½³Ì£¬Çó³ö½»µãµÄ×ø±ê£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø