题目内容
设a>0为常数,动点M(x,y)(y≠0)分别与两定点F1(-a,0),F2(a,0)的连线的斜率之积为定值λ,若点M的轨迹是离心率为
双曲线,则λ的值为( )
3 |
A、2 | ||
B、-2 | ||
C、3 | ||
D、
|
分析:根据题意可分别表示出动点P与两定点的连线的斜率,根据其之积为常数,求得x和y的关系式,对k的范围进行分类讨论,看k>0根据圆锥曲线的标准方程可推断出离心率,从而求得λ的值.
解答:解:依题意可知
•
=λ,整理得y2-λx2=-λa2,
当λ>0时,方程的轨迹为双曲线,
-
=1
∴b2=λa2,c=
=
∴e=
=
=
=
∴λ=2
故选A
y |
x+a |
y |
x-a |
当λ>0时,方程的轨迹为双曲线,
x 2 |
a 2 |
y 2 |
λa 2 |
∴b2=λa2,c=
a 2+λa 2 |
(λ+1)a 2 |
∴e=
c |
a |
| ||
|a| |
λ+1 |
3 |
∴λ=2
故选A
点评:本题主要考查了圆锥曲线的综合.考查了学生对圆锥曲线标准方程的考查和应用.
练习册系列答案
相关题目