题目内容
已知函数f(x)=4x+1,g(x)=2x,x∈R,数列{an},{bn},{cn}满足条件:a1=1,an=f(bn)=g(bn+1)(n∈N*),cn=| 1 | ||||
[
|
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{cn}的前n项和Tn,并求使得Tn>
| m |
| 150 |
(Ⅲ)求证:
| a1 |
| a2 |
| a2 |
| a3 |
| an |
| an+1 |
| n |
| 2 |
| 1 |
| 3 |
分析:(Ⅰ)由题意an+1=4bn+1+1,an=2bn+1,由此可知数列{an+1}是首项为2,公比为2的等比数列.从而得到an=2n-1.
(Ⅱ)由题设条件知cn=
=
(
-
),由此可知Tn<Tn+1,n∈N*.当n=1时,Tn取得最小值
.由题意得
>
,从而得到m=9.
(Ⅲ)证明:由题知
+
++
≥
-
(
+
++
)=
-
(1-
).由此可知
+
++
>
-
(n∈N*).
(Ⅱ)由题设条件知cn=
| 1 |
| (2n+1)(2n+3) |
| 1 |
| 2 |
| 1 |
| 2n+1 |
| 1 |
| 2n+3 |
| 1 |
| 15 |
| 1 |
| 15 |
| m |
| 150 |
(Ⅲ)证明:由题知
| a1 |
| a2 |
| a2 |
| a3 |
| an |
| an+1 |
| n |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n |
| n |
| 2 |
| 1 |
| 3 |
| 1 |
| 2n |
| a1 |
| a2 |
| a2 |
| a3 |
| an |
| an+1 |
| n |
| 2 |
| 1 |
| 3 |
解答:解:(Ⅰ)由题意an+1=4bn+1+1,an=2bn+1,
∴an+1=2an+1,(2分)
∴an+1+1=2(an+1),
∵a1=1,
∴数列{an+1}是首项为2,公比为2的等比数列.(4分)
∴.an+1=2×2n-1
∴an=2n-1.(5分)
(Ⅱ)∵cn=
=
(
-
),(7分)
∴Tn=
(
-
+
-
++
-
)=
(
-
)=
=
.(8分)
∵
=
•
=
>1,
∴Tn<Tn+1,n∈N*.
∴当n=1时,Tn取得最小值
.(10分)
由题意得
>
,得m<10.
∵m∈Z,
∴由题意得m=9.(11分)
(Ⅲ)证明:
∵
=
=
-
=
-
≥
-
•
,
k=1,2,3,,n(12分)
∴
+
++
≥
-
(
+
++
)=
-
(1-
).
∴
+
++
>
-
(n∈N*).(14分)
∴an+1=2an+1,(2分)
∴an+1+1=2(an+1),
∵a1=1,
∴数列{an+1}是首项为2,公比为2的等比数列.(4分)
∴.an+1=2×2n-1
∴an=2n-1.(5分)
(Ⅱ)∵cn=
| 1 |
| (2n+1)(2n+3) |
| 1 |
| 2 |
| 1 |
| 2n+1 |
| 1 |
| 2n+3 |
∴Tn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 2n+1 |
| 1 |
| 2n+3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2n+3 |
| n |
| 3×(2n+3) |
| n |
| 6n+9 |
∵
| Tn+1 |
| Tn |
| n+1 |
| 6n+15 |
| 6n+9 |
| n |
| 6n2+15n+9 |
| 6n2+15n |
∴Tn<Tn+1,n∈N*.
∴当n=1时,Tn取得最小值
| 1 |
| 15 |
由题意得
| 1 |
| 15 |
| m |
| 150 |
∵m∈Z,
∴由题意得m=9.(11分)
(Ⅲ)证明:
∵
| ak |
| ak+1 |
| 2k-1 |
| 2k+1-1 |
| 1 |
| 2 |
| 1 |
| 2(2k+1-1) |
| 1 |
| 2 |
| 1 |
| 3×2k+2k-2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2k |
k=1,2,3,,n(12分)
∴
| a1 |
| a2 |
| a2 |
| a3 |
| an |
| an+1 |
| n |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n |
| n |
| 2 |
| 1 |
| 3 |
| 1 |
| 2n |
∴
| a1 |
| a2 |
| a2 |
| a3 |
| an |
| an+1 |
| n |
| 2 |
| 1 |
| 3 |
点评:本题考查数列的综合应用,解题时要认真审题,仔细解答.
练习册系列答案
相关题目