题目内容
19.函数f(x)=$\left\{\begin{array}{l}{\sqrt{1-{x}^{2}},-1≤x<1}\\{lgx,x≥1}\end{array}\right.$的零点个数是( )A. | 0 | B. | 1 | C. | 2 | D. | 3 |
分析 作函数f(x)=$\left\{\begin{array}{l}{\sqrt{1-{x}^{2}},-1≤x<1}\\{lgx,x≥1}\end{array}\right.$的图象,利用数形结合求解.
解答 解:作函数f(x)=$\left\{\begin{array}{l}{\sqrt{1-{x}^{2}},-1≤x<1}\\{lgx,x≥1}\end{array}\right.$的图象如下,
由图象可知,
函数f(x)=$\left\{\begin{array}{l}{\sqrt{1-{x}^{2}},-1≤x<1}\\{lgx,x≥1}\end{array}\right.$的零点个数是2,
故选:C.
点评 本题考查了学生的作图与用图的能力,属于基础题.
练习册系列答案
相关题目
7.设x,y满足约束条件$\left\{\begin{array}{l}{x+y≤1}\\{x+1≥0}\\{x-y≤1}\end{array}\right.$,则目标函数z=$\frac{y}{x-2}$的取值范围为( )
A. | [-3,3] | B. | [-2,2] | C. | [-1,1] | D. | [-$\frac{2}{3}$,$\frac{2}{3}$] |
9.若(x2+$\frac{a}{x}$)5的二项展开式中x7的系数为-10,则实数a=( )
A. | -2 | B. | 2 | C. | -1 | D. | 1 |